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Abstract
.

Numerical  solution of the MHD wave equations for stabil i ty of the “

cometary sheath determined by the balance between the inward Lorentz

body force and the outward ion-neutral drag force is obtained by using a

two-point boundary value method, T h e  eigenvalues and the eigenfunctions

are obtained numerically by treating the cometary inner-sheath ‘as a layer

of finite thickness, bounded by the contact surface, i.e., the diamagnetic

cavity boundary. The magnetic field structure discovered in the ionosphere

of comets Halley and Giacobini-Zinner is found to be unstable. The effects

of finite plasma pressure, dissociative recombination and mass loading due

to photoionization are found to be stabilizing but are unable to quench the

instability completely. It is also found that the higher the neutral

production rate the lesser is the growth rate for the instability.

Subject Headings: Comets, MHD Stability



1. Introduction:

Various cometary boundaries are  c lass i f ied  in to  th ree  ca tegor ies :  i )

cometary dynamical boundaries, ii) solar wind and IMF boundaries, and

iii) transient boundaries. The dynamical boundaries are the permanent

features of cometary plasma environment. The plasma in the inner coma

of the comet Halley was observed by the Giotto, Vega and ICE to be almost

stationary and of cometary origin. The ionosphere was detected by the .

magnetic

kilometers

al . ,  1986).  The

surface within a

field exhibits  a

away from the

magnetometer as a  f ie ld  f ree  d iamagnet ic cavi ty  deep  wi th in  th i s

stagnation region encountered by the Giotto (Neubauer et

magnetic field drops from 20 nT to nearly zero on cavity

thin layer of  about  25  km th ickness .  The

maximum of  about  50-60  nT thousands of

ionopause (cavity surface designated as CS) -

The formation of such a cavity surface can

the balance between the inward Lorentz J X B

non- neutral drag force exerted on the plasma

and Axford 1982, 1987, 1990).

4600 kms from the nucleus.

be explained by considering

body force and the outward

element (Cravens, 1986; Ip

is performed by taking it as an inhomogeneous

proportional to the distance from the nucleus

The stability analysis of a thin layer of cometary plasma surrounding the

cavity surface (ionosphere)

plasma, density inversely

and magnetic field determined by the balance between the outward non-

neutral

of the

(1989)

drag force and the inward magnetic stress. The stability analysis

cometary ionosphere/ion opause

and Mckenzie et al., (1990)

was performed by Ershkovich et al.,

using (JWKB)  approximation. Certain
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limiting cases of the wave equa

approximation.

ions were studied under the slow variation

In this  paper,  we present numerical  solutions of the wave equations

derived in the above two papers by considering the cometary inner sheath

as a layer of finite thickness bounded by the ionopause on the inner side.

The equations are  so lved  in  the  genera l case  for  cer ta in  rea l i s t i c

parameters for comets Halley a n d  Giacobini-Zinner  by using a two-point  -

boundary value method. T h e  eigenvalues and the eigenfunctions arc

shown in figures (1)-(7). Our results indicate that the cometary sheath is

linearly u n s t a b l e  t o p e r t u r b a t i o n s  o f  c e r t a i n wavelengths. The

photoionization, recombination and plasma pressure have the effects of

stabilizing the boundary, but the instabi

numbers.

ity still persists for certain wave

The paper is organized as follows: In section 2 we present the linearized

non-dimensional MHD equations suitable for numerical computation as a

two point boundary value problem. Computational procedure is described

in section 3, and results are discussed in section 4. A summary of results

and concluding remarks are given in section 5.

2. Basic Equations Governing the Stability:

2.1 The Configuration:

The magnetic field structure is derived following the Ip and Axford model

which assumes that the plasma inertia and pressure are negligible. Thus,

the balance between the magnetic stresses acting on the plasma element
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and the

magnetic

power of

ion-neutral friction determines the equilibrium

field. The density is assumed to be inversely

the distance from the nucleus and is taken as

Ili = Ilio (r/L)s

structure of the

proportional to a

(1)

where L is some radial scale length, r is the distance from the nucleus and

s is the power law index. The magnetic field is given (Ershkovich  et al.,

(1989)) by:

=[$l(?ra-wJ’2’-1<s<1 (2a)
B. /Bm

‘o’Bm=4+21”(iY’>  ‘orS=-’
(2b)

where B. and Bm denote the magentic field and the maximum magnetic

field at distances r and rnl from the nucleus. The subscript O refers to

background equilibrium quantities.

The magnetic field vanishes at

the nucleus

1

( )
1–SG s+–]ro=rm —
2’

r . = rrn exp (-1/2),

the ionosphere at a radial distance from

(3a)

for s = -1 (3b)
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2.2 Wave

The  s tab

Equations for a cold plasma:

lity a n a l y s i s  i s made  by  tak ing a planar geometry. T h e

equilibrium magnetic field is assumed to be directed along the z-axis and

varies in the x-direction. The neutral gas flows along the x-direction, The

equilibrium stress balance equation is given by:

1 dPo— — = ~ovn - v:/R
po dx

(4)

where P. = B:/2~0 J ‘: =  B: /Uo Po, and V: / R represents’ magnetic

tension, VO=V+~ a n d  V. is the neutral gas velocity.
Po

The equil ibrium plasma density PO is assumed to be determined by the

photochemical equilibrium, (neglecting convection) viz.,

~p~/Mi=6Pn (5)

where (x is the dissociative recombination rate, a n d  bpn is the

photoionization rate and Mi is the ion mass of water group ions. The

equilibrium density of cometary ions in the ionosphere of comet Halley is

taken  as  3000  cm-s  for an electron temperature Te s 300 K, (Ip et al.

1 9 8 7 )  E 7 x 10-7 , and 5 s 10-6/s

The stability analysis is restricted o twist-free perturba ions, i.e., ~.grad ~.

is neglected. Following the usual  procedure for the derivation of the

l inear ized  s tab i l i ty  equa t ions ,  we  a r r ive  a t  the  fo l lowing  two-wave

equations:
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[($’’)(:+vo)+N21q=*  *-(:+p) E $)pm (6)

[%H:+vOlpm=(:+”OE--N2)q (7)

w h e r e

Eo” B
g=~vn, q=pou, pm= T, and

N* 1 dpo 1 dBo = aPo—=— — ———
Bo dx ‘ P~g PO dx i

(8) -

(8)

In the above, V. = v + ~/2, and pm and q are perturbations in magnetic

pressure and particle flux along x.

Assuming

and using

that perturbations in all physical quantities vary as

Q(x,y,t)=Q(x)exp( iky-i6)t)

the following non-dimensional quantities

(9)

q!2iL
‘*=Y P m  va*-23 Pm*=— = gL/Va2, I.)O* =~o/Lli

mo Pmo ‘
( l o )

where L is  a characterist ic scale length, PmO i s  equi l ib r ium magnet ic

pressure and  Cl i i s  the  ion  gyra t ion  f requency ,  the  non-d imens iona l

forms of equations (6) and (7) dropping asterisks suitable for numerical

solution can be written in the form:
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dpm =

- [

—i.) 2-
Va2(~ - i..))  -E -

:[ 1k 2 “—= +Pm+
~o – im + gVa

[
Pm — ‘ -!!-vo-l(J)+p_io ,

N 2

—q
~

(11)

(12)

2.3 Wave Equations for a Warm Plasma:

The corresponding set  of  non-dimensional  equations for a warm plasma -

i.e., including the plasma pressure and appropriate energy equations are

(using the same non-dimensional quantities as given in (10) and dropping

asterisks)

[:+b:+j(:+.o)+q;+Pe)q

[[~+b:+c]*-vi2;($+.o)(;+P)*(:+w)]Pt

(13)

(14)

V P*
2 = (V; + C 0

2) / (L2Qi2), N*2 = N2 / f2i2
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~* (x*+(yx*+p*)cf= c?= v: / C02
I+C12  ‘

C*= cfya*p*  /(l+ c?)

N and Nm are the Brunt-V~iiala frequencies,

N 2 1 dpo 1 dPlo.— _ —  —
=  p o  dx

g=vVn,
T PoV~ dx ‘

Nm2 1 dPo 1 dPgo—= — —  .
g po dx Pc)V& dx

(15a)

(15b)

(15C)  -

{

YPgo
Here, Vp, is the fast magnetosonic  speed and co= — is the sound speed.

Po

Assuming as usual that all perturbations have the form as given in Eq. (9),

we can rewrite Eqs. (13) and (14) in the following form suitable for

numerical computation:

1-

d

1

~2 ico(~ – im)(ycx-ice)

&q= (i@–uo) (u2-t-ibo-c)

(16)

Pt N2 (f% - io) (~ - io))—— q (17)
~ w2+ibo–c

The background

calculated using

(1) and (2b).

equilibrium

the density

quantities, viz,, v?, N2, p, PC, b, and c are

and magnetic field distributions given in Eqs.
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3. Numerical Procedure:

Equations (9), (10), and (16), (17) are solved numerically as an eigenvalue

problem by using a two-point boundary value method. They are written in

the form:

2
DZj– z Ajm Zm =o, j=l,2; m=l,2

rn=l

Z1=pm=,  andpt=Oatx=O,

ZI-+0 as X+OO

x = xc defines the exterior edge of the boundary

+ pg, the perturbation in total pressure. Ajm is

Outside the boundary

2
~cjk‘j= “

(18a)

(18b) - -

(18c)

layer  and  pt = pm

the coefficient matrix.

layer solutions of Eqs, (18) are written in the form

exp (kkx), j = 1, 2 (19)
k=]

where Cjk is the fundamental matrix. The characteristic roots of the

matrix, Ajm are 11 and -12, which are obtained numerically.

As the solutions are bounded as x -+ 00, the eigenvalues with positive real

parts ,  viz,, 1] mus t  be  d i scarded , thereby leaving only one l inearly

independent, exponent ia l ly  decaying  so lu t ion .  The  eigenvalues and the

eigenfunctions are obtained with the help of a computer code ( Scott and

Watts, 1 977). This method of evaluating eigenvalues and eigenfunctins

has been widely and successfully used (Nayfeh, 1981; Floryan and Saric,
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1982, Srivastava and Dallmann,  1987 and references therein). For chosen

values of or and k, an estimate of Oi is made. The known solutions at x =

xc are used as the initial conditions and the integration is performed from

x = xc to zero. In case the computed solution

boundary conditions at x = O , @ i is incremented

Raphson  scheme. The process is repeated until the

does not satisfy the

by  us ing  a  Newton-

boundary conditions at

x = O are satisfied to within a specified accuracy. The eigenvalues of the

adjoint problem are the same as those of the basic problem.

The boundary conditions at x = Xe are obtained by writing Eqs. (18) in the

form:

D Z = A OOz (20)

where A is the matrix for x = xc and the bold letters denote matrices. The

characteristic roots with positive real parts lead to growing solutions.

Hence, the eigenvalues with positive real parts must be discarded, thereby

leaving only one linearly decaying solution. To achieve this, we consider

the general  solution obtained by superposit ion of fundamental  solutions.

We write,

z = C b (21)

The fundamental matrix C is a matrix containing no terms in x. Inverting

system (21 ), we obtain

C-]z=b (22)
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The asymptotic boundary conditions require that b = O. By reducing

m a t r i x  A  _ to a Jordan canonical form with the help of a similarity

transformation J = P-] A ~ P, and by using the concept of adjoint system,

we obtain the boundary conditions for the adjoint system as

S* Z* = (), Zit X=Xe

where S* consists of the last row of

matrix and P’r is its transpose.

The boundary conditions at x = xc

T Z = O

where T consists of the last row of

and P*T is its transpose,

(23)

PT, P is the similarity transformation

for the basic system are

(24)

P*T, P* is the complex conjugate of P

4. Results with Application to Comets:

The plasma parameters chosen for numerical  computations have been

selected to refer to both comets Giacobini-Zinner and Halley. The physical

parameters for comet G-Z are: rm = 7600 km, and r. = 4600 km which,

respectively, give distances at which the magnetic field has maximum and

minimum values (Bmax s = 60 nT, Bmin = O, Ip and Axford, 1990).

Nn,  the number density of neutrals s 2.2 x 10s cm-q with the total

sublimation rate Q= 3xIOZ8 molecule s-l and Vn s 0.9 km s-l , v the ion

neutral collision frequency s 6 x 10-3 S-l, a, the dissociative recombination
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rate taking account of the dependence on ion and neutral densities is s 7

x 10-7 (300/ Tc)l/2 cm~/s (Mendis et al., 1985) where Te is the electron

temperature. For Te - 300 K (Ip et. al., 1987),  a comes out to be 7 x 10--~

cms s-l. Assuming photochemical  equilibrium Eq. (5) gives nio - 600 cm- ~

for 5 - ]()-6/s.

The background physical parameters corresponding to comet Halley in

which  the  number  dens i ty  var ies  inverse ly  as  the  d i s tance  f rom the  -

nucleus are:

the sublimation rate Q s 3xIOZ8 molecule s-l , Vn s 0.9 km s-l , the

number  dens i ty  of  neu t ra l s  s 5.5 x 106 cm-s , CL = 3.8 x 10-7 cms /s for

T e = 300 K, and nio = 3000 cm-s . With this plasma number density, Bnl

- 50 nT at r = 8400 km. Thus rm = 8400 km, r. = 5095 km, ~H = 5x [3

of G-Z and V. = 7.5 10-3 s-l.

The non-dimensional background physical quantities are given by

P E o.02/(x+  Xo ) (25)

~Halley~ 5X  ~G-Z (25a)

(26)

v: =@2*\@m”xln*V:m) (27)

N2= g/(~”xm “X,n) (28)

x] = (x + xo)/xHl, xln = 1 + 2 lnxl (29)



where r is the distance from the nucleus, Vam is  the reference Alfv6n
2 N2 and ~ are shown in Figs. (1 a, b). The correspondingvelocity . Vi , ,

non-dimensional  quanti t ies accounting for pressure effects are writ ten

from Eq. (15).

Using the above parameters, we have calcu

eigenfunctions as described in the preceding

a ted  the  eigenvalues  and the

section. Computational results

show that the cold ionosphere is unstable for a range of wave numbers: -

5.5 E-3 km-l  to 3.2 E-3 km-l. Corresponding unstable wave length range is:

found to be 1100 km to 200

pressure effects are included,

to: 9.6 E-3 km-]- 1.014 km-l

km. In the case of cometary sheath where

he range of unstable wave numbers reduces

The corresponding wavelength range for

unstable waves is centered around 600 km which is in agreement with

McKenzie et al. (1990).

Fig. (2) shows (oi , k) relation for ~ = 0.02/(x+x0  ) , and ~ = O for comets

Giacobini-Zinner and Halley (using (25a)). The top two panels of Fig. (2)

show the (w i , k) relation for the cometo-sheath boundary at distances of

4620 km and 4650 km from the nucleus, The growth rates are larger by a

factor of two for the boundary at 4620 km than for the boundary at 4650

km. This implies that deeper into the ionopause, growth rates increase

sharply. The panel 3 from the top shows (~i , k) relation for the comet G-Z

when recombination is neglected. By comparing panels 2 and 3, it can be

seen that the growth rates are larger in the absence of recombination.

Panel 4 shows the (~i , k) relation for the comet Halley. The growth rates

are larger by a factor of 1.5 for the comet G-Z than the comet Halley due to

its less production rate..
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Figs. (3a,b)  show the eigenfunctions pmj and q; (perturbations in magnetic

pressure and particle flux)

plasma. It can be seen

pressure goes to zero at

condition imposed on the

increases with increase in

for certain wave numbers for the case” of cold

from Fig.  (3a) that  perturbation in magnetic

the ionopause  boundary which is  a boundary

system. The perturbation in magnetic pressure

wavelength, It is obvious from Fig. (3b) that

perturbation in particle flux increases towards the ionopause boundary -

and is larger for perturbations of larger wavelengths.

Figs. (4a,b)

modified by

show the corresponding

the plasma pressure as

basic quantities I/v~ ,N2 ,p and PC

a function of the distance in km from

the ionopause cavity boundary.

Fig. (5) shows the (coj , k ) relation for two sonic velocities, viz., W , and <~

lm~/s. Curves labelled as 4 and 5 refer to the comet Halley and curves

labelled as 1,  2,  3 refer  to comet Giacobini-Zinner.

growth rates for the cometo-sheath of

cometo-sheath of comet G-Z. Also they

velocity.

Figs. (6a,b) and (7a,b)  show

certain wave numbers for C: = 2

comet Halley

decrease with

It can be seen that

are smaller than the

the increase in sound

t h e  eigenfunctions  pm r, pmi and  qr, qi f o r

kmz s-2 (pm r, pmi , qr , qi are the real and

imaginary parts  of  perturbations in magnetic pressure and particle  flux

respectively) as a function of distance from the ionopause. It is noted from

Figs. (6a,b) that perturbation in magnetic pressure has oscillatory nature.

It goes to zero at the inner boundary of the cometo-sheath which
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is a boundary condition imposed on the system. Figs. (7a, b) show that

perturbation in particle flux also has an oscil latory nature becoming

maximum at the boundary.

I t  i s  found  tha t  the  growth

increasing sound velocity. It can

rates of l inear instabil i ty decrease with

be seen from Figs. (2) and (5) that growth

rates are larger if no recombination is accounted for, i.e. the ionosphere is

destabilized as ~ decreases. The thickness of the ionopause transition layer -

is only - 25 km (Neubauer, 1 9 8 8 ) . The deeper into the ionopause, the

growth rates become larger due to the fact that hydromagnetic counterpart

of square of the Brunt-V  aisal~  (Eckart, 1960) frequency, N2 (shown in

Figs, (lb)

transition

increases.

production

and (4b)),  is negative and increases sharply inside the ionopause

ayer.  The growth rates also decrease if nio, the plasma density

This implies that  the growth rates decrease with increasing

rate of the neutrals. Also the greater the production rate the

more is the number density of neutrals and the plasma and consequently fl

increases and growth rates decrease. The growth rates for comet Halley are

found to be smaller (due to its larger production rate) than for the comet

Giacobini-Zinner.

5.  Conclusions:

We have investigated the stability of

solving the MHD wave equations for

the balance between the inward Lorentz

the cometo-sheath by numerically

he cometary sheath determined by

body force and the outward

ion-neutral drag force using a two-point boundary value method. The main

conclusions of the study are:
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1. The magnetic field structure resulting from the balance between the

m a g n e t i c  s t r e s s e s  a n d  t h e  i o n - n e u t r a l  d r a g  f o r c e  i n  t h e  c o m e t a r y

ionosphere is unstable to disturbances of wavelengths from 2 0 0  km to

1 1 00 km for a cold ionosphere and from 620 km to 650 km for a warm

ionosphere. Thus perturbations of wavelengths centered around 600 km

are unstable in both the cases.

2. Inclusion of plasma pressure in the stabil i ty analysis  results  in the -

stabilization of the ionosphere except for the wavelength range centered -

around 600 km.

3. Effects of plasma recombination and pressure are stabilizing but are

unable to quench the instability completely. The finite amplitude effects

also cannot quench the instability either (Ershkovich and Flammer, 1988).

S i n c e  N2 , the square of Brunt-V3isala  frequency < 0 and increases sharply

in the ionopause transit ion layer (25 km thickness),  the inner cometo-

sheath remains unstable.

4. It is found that the higher the neutral production rate the lesser is the

growth rate for the instabil i ty.  I t  is ,  therefore, conjectured that the

inactive comets , say those at 2-3 A.U. from the sun where productivity of

neutrals is less are likely to be more unstable.

5. The effect of plasma motion which is about a few km./sec (Balsiger et.

al., 1986) and finite conductivity (Eviatar and Goldstein, 1988) play an

important role in determining the stability of the cometo-sheath. We have

17



obtained the results for the stability of cometo-sheath including plasma

motion, resistivity, and plasma pressure which will be reported shortly.
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Figure Captions:

Fig. 1. shows l/Va2 as a function of distance in km from the ionopause.

Fig. 1a. shows the square of the Brunt-V~isal; frequency as a function of

distance from the cavity surface.

Fig. 2. shows growth rates normalized to Qi against the wave number

normalized to L. The top and the second panel refer, respectively, to the

ionopause at 4620, 4650. km from the nucleus. The third panel refers to -

the case for zero recombination rate. The bottom panel

for the comet Halley. The top three panels give growth

Giacobini-Zinner..

g i v e s  g r o w t h  r a t e s  ~

rates for the comet

Fig. 3a. shows the perturbation in magnetic pressure for k= O.55, 0.6, 0.7

and 0.8 as a function of distance from the ionopause layer

Fig. 3b. shows the

against distance

Fig. 4a. shows

distance in km

Fig. 4b. shows

in

perturbation in particle flux for k=O.6, 0.7 and 0.8

km from the ionopause layer

l/Va2 and ~ modified by plasma pressure as functions of

from the ionopause.

the square of the Brunt-Viiisala frequency and ~e (defined

in the text) as functions of distance in km from the ionopause.

2 0



Fig. 5. shows growth rates normalized to fli against the wave number

normalized to L. The curves labelled  1,2,3, and 4 refer, respectively, to the

comet Halley and Giacobini-Zinner for sound velocities equal to ~ and

~ km/s.  The curve labelled

the comet Giacobini-Zinner.

5 corresponds to zero recombination rate for

Fig. 6a. shows the real part of perturbation in magnetic pressure for

k= 0.98, 0.99, 1.0 and 1.01 for sound velocity equal to W km/s against -

. .

distance in km from the ionopause layer

Fig. 6b. shows the imaginary part of perturbation in magnetic pressure for

k=O.99, 1.0, 1.01 and 1.014 for sound velocity equal to ~ km/s against

distance in km

Fig. 7a. shows

from the ionopause layer

the real part of perturbation in the particle flux for k= O.98,

1.0 and 1.01 for sound velocity equal to ~ km/s against distance in km

from the ionopause layer

Fig. 7b. shows the imaginary part of perturbation in the particle flux for

k=O.98, 0.99 and 1.01 for sound velocity equal to W km/s against

distance in km from the ionopause layer

21





0

-103 ●  N2/Qi2 BRUNT VAISA~ FREQ.2—

o
0

0

A

o
0

cd
o
0

-b
o
0

a
o
0

4
0
0

(c
c
c

I m

>’
l - l I xl

x+
m

,/::

5 x 103 (KIi (RECOM. RATE)



m

“OMI HALLEY
O)ilQi

o 0 0 0
0 0 0 0
0 N -Pm

o , , ! ,1, ,,[s
k l’r; ~’’ l’’’@-+”! , , 1,, ,

t

OMI, ~= O
@ilK2i

o 0 0
0 0 0
0 N -P
-J >,, 1,,11!! t 11! ,1, ,,1

f

‘1’’’1” ,,,

OMI 4650
03ilf2i

000!=
o~o
o N E
0000

1 , 1 ?  1 , 1 ! , !

I
‘ 1 i ‘ I i l 4 I

H
o

-u
>

OMI 4620
0.)i/C?i

0000
000:
O N - P

T
-i

N

A



u

PERTURBATION IN
PMI FOR k=

v

o
4

0
iv

o
in

o
b’)

o

o.
03

2

0

MAGNETIC PRESSURE
0.55, 0.6, 0.7, 0.8

0 0 0 0 0 -
0 iv G b-l b 0

, , ! ! 1
,,

/’-
~ -7

0
/

/
/

{

/
/

/ /
/ /

/ /u//
I /

/
\ /

‘w\ /\ I
\,

‘.\ ‘, -\ x
‘)6 II1 II

\
x \
II )
0 /

/,



7
5
c
33
m
m
o-

.

u
G
+
>
z
0
m
-n
m0
z

N.)
0

A

00

Iv0
‘a

.
kc

-P
c
c

CJ
c
c

a
c
c

a)00

m
0a

-J

cc

I
d 0

PO u = ~i PERT. IN PARTICLE FLUX

“/ //”o 0
ix)

! 1 1 1 I

o



18.0625 km-2s2/Va2 MODIFIED BY p

0

2

00

No0

cd
o0

80

(no0

0-)o0

20

0200

co
:

A

o00

o~ A N p 0 cd -b p u-l
ill o b-l o (n “o b-l o (n o

I

,

0 0-: N p CJ cd + b u-l
o in o u-l o (n o in o h-l o



-I 02 N2/S2i2 MODIFIED B Y

u
c
c

:
c
c

I
/

\
\
\
\
\
\
\
\
\
\

1 \ \ \ \ \ \ \~
z

\rD*

N
\

. \

m \
m \

i-
>:

\
\
\
\
\
\
\

\ “
\

-n \
xl \

~
\

\
N \

\
\

\
1 I t , ! t ! t

) 0 0 “o 0 0 0 0 0 0
.
d iv L b b-l b “+ b) co ?>

)

102 ● pemi



GROWTH RATES, ~i/Qi

$
m
m
ul

.

II
0
0
-b

A

o
0
m

A

o
N

A

o

)

)
)



0

2

0
0

w
o
0

cd
o
0

~
o

U-I
o
0

0
0
0

24
0

m
o
0

m
o
0

4

P~Xr FORc=~k ms-’k =0 .99,1 ,1.01

o 0 0 0 0 0 0 0 0 0 0
in & id iv~ o A ‘b b “k b-l

! ! 1 ,
0 ,

,
A

I

/

/

/

/

1
I
\
\
\
\
\
\

/
/

r
I

xl x “) A

A!.!.
II

—
o if)

CO
o

\
\
\

, [ 10
0
00 0 0 0 0 0
L o 0 0 0 0
0 m 0 -P Iv o

0 0 0
0 0

-b
o

N 0)

P ~Xr FOR c = {2 km s-’ FOR k = 0.98

O=
o c)
a c)



0

.-k

0
0

!3
0

cd
0
0

-b
0
0

W
0
0

6)
0
0

4
0
0

m
0
0

co
0
0

A

0
8

P~Xi FORc={2km  s-’ k= O.99, 1, 1.01, 1,014

0 0 0 0 0 0 0 0 0 0 0
in b “u h> o “d iv id “b “in

x
II

o
-P

~;..

//./
1 k , 1 1 I



!b
m

0’

A

o
0

a
o
0

cc
c
c

d

c
c
c

m
o
0

/
I
I
1
I
\

m0
0

x ~\-\
H \,II .
0
to
co

A 1,

0 1,
A //
//

0/

I
I
I
I
I

\“ \
\\
\\
\\
\\

> “)
//

t , f t ! t I 1 t ! 1



.

pOui=Qi FOR C=@kms-’ k=0.98,1,1.01

II

\
\

1
I

/
/

Ill
I ! f ! ! , ! ! t 1

.


